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In this paper we develop and test an exponentially fitted finite volume
method for the numerical solution of the Navier-Stokes equations
describing 2D incompressible flows. The method is hased on an
insttuctured Delaunay maoesh and its dual Dideblet tessellation, com-
bined with a locally constant approximation to the flux, This yields a
piecewise exponantial approximation to the exact solution. Numerical
tests are preserted for a linear advection-diffusion problem with
boundary tayers. The method is then applied to the driven cavity
problem with Reynolds numbers up to 10* The numerical results
inclicate that the method is robust for a wide range of values of the
Reynolds number. In the case Re = 10 unsteady solutions are captured
if the mesh is sufficiently fine. -C 1994 Academic Prass, Inc.

1. INTRODUCTION

In this paper we are concerned with the numerical
solution of the two-dimensional unsteady incompressible
Navier-Stokes equations in the streamfunction—vorticity
variables i, e on the domain Q x (0, T'] given by

Vi —w=0 (1.1}
dw 1
—-V.[— Vo =F .
y (Re Ve a(',[/)w) (1.2)
with the initial and boundary conditions
Yrix, 0) =(x),
wix, ) =w,x} Yxel2 (1.3)
Pix, Y=y p(x, 1) Yix,Ned2x(0,T] (14)

Virix. 1) - n=ru(x, 1) Yix, 1)ed2x (0, T], (1.5)
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where Re >0 denotes the Reynolds number, x =1{x, ),
a(y)=curl ¢ = (., —,), Tis a positive constant, 2 € R?
is a bounded open region, 82 denotes the boundary of €2,
and n denotes the unil cutward normal vector, We remark
that there 15 no  physical boundary  condition  (or .
However. in computations, its nodal values on 3Q can be
determined numerically using (1B}, (1.4}, and (1.5). We
discuss this later in more detail.

It is well known that when Re is large, the solution of
(1.1)-(1.5) displays sharp boundary layers so that classical
methods may yield erroneous approximate solutions. In
attempting {0 overcome this difficulty upwind schemes are
often used. However, it has been pointed out in [2], for
example, that these schemes may still give inaccurate solu-
tions. There are also many finite element and finite volume
methods for the solution of (1.1)-(1.5). In this paper we dis-
cuss the application of an exponentially fitted finite volume
method [ 12, 137, sometimes called the box method, o the
solution of {1.1)—(1.5), which has been highly successful in
the context of the numerical solution of the semiconductor
device equations [3, 13], where a in (1.2) is irrotational.
This meihod is based on a pair of unstructured dual meshes,
known as the Delaunay mesh and its dual Dirichlet tessella-
tion, and on 4 piecewise constant approximation to the flux
proposed independently by Allen and Southwell [ 1] and by
Scharfetter and Gumme! {187 which vields a piecewise
cxponential approximation to the exact solution. The
method in higher dimensions has been analysed by some
authors for the case where a in (1.2} is irrotational, for
example, {15, 177. An analysis for the case where a is not
irrotational can be found in [ 16].

The rest of the paper is organised as follows. In the next
section we discuss the finite volume method for a general
convection-diffusion equatiofl. The application of the
method to (1.1)-(1.2) and the evaluation of the boundary
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conditions for (1.2) are given in Section 3. In Section 4 we
apply this method to a linear advection-diffusion problem
with boundary layers. The numerical results show that the
rate of convergence in a discrete e-independent energy norm
is 1'* when ¢ < h. We also apply the method to the driven-
cavity problem for Reynolds numbers up to 10* using both
unstructured and structured meshes with mesh sizes #x &,
The numerical results show the robustness of this finite
volume method. For the case where Re=10* unsteady
solutions are obtained.

In what follows we use {-| to denote absolute value,
Euclidean length, area or volume, depending on the context.

2. THE FINITE YOLUME METHOD

In this section we discuss the finite volume method for
solving general convection—diffusion equations of the form
Oufot — V- (e Vu—a(x, Nu) + G{x, Nu=F(x, 1) (2.1}
for all {x,¢)eQ2x{0,T] with Dirichlet and Neumann
boundary conditions u(X, }| 20, = up(X, r}and Vi(x, £) -0,
=up(x, 1), where a{x, ) ={(a,{x, ), ax{x, }) and ¢ is a
positive constant. It is easy to see that (2.1) contains (1.1}
and {1.2} as special cases.

To discuss the finite volume method we first define two
partitions of €. Let T be any partitioning of Q by a mixture
of triangular and rectangular elements. Let X={x;}
denote the set of all vertices of T and E = {e;} ¢ the set of
all edges of T.

DeriniTion 2.1. T is a Delaunay mesh if, for any ele-
ment of T, the circumecircle of the element contains no other
vertices in X (cf. [4]).

We assume henceforth that T is a Delaunay mesh.

DeriNiTION 2.2. The Dirichlet tessellation D corre-
sponding to the Delaunay mesh T is defined by D = {d,} [,
where

di={xe:|x—x;| <|x—x;{,x,eX,j#i}
forall x,e X' (cf. [5]).

We remark that for each x; € X, if Tis a Delaunay mesh,
then 4, is convex and its boundary 04, is the Voronoi
polygon [23] obtained by connecting the circumcentres of
the elements having X, in common. In fact, each segment of
&d; is perpendicular to one of the edges joining x,, and its
length equals the distance between the circumcentres of the
two elements sharing that edge. Part of a typical Delaunay
mesh and its dual Dirichlet tessellation are shown in
Fig. 2.1, The Dirichlet tessellation D is a mesh on £2 dual to

— mesh T
mesh D

F1G. 2.1, Part of a Delaunay mesh 7 and dual Dirichlet tessellation D.

T and the number of clements inD is equal to Ny.
Obviously, 7 and D are staggered.

We comment that the definition of Delaunay mesh here
allows the presence of both triangular and rectangular
elements in a mesh. In practice, if four of the mesh nodes
form a rectangle we keep them as a rectangular element.
This is because whether a rectangle is divided into two
triangles or not makes no difference to the discretised
equations, as is seen later. In doing so we also remove the
non-uniqueness of a standard Delaunay triangulation when
four of its nodes form a rectangle.

Without loss of generality, we assume that the edges and
the vertices are numbered so that {e;} I’ is the set of all edges
in E that are not on €2, and {x;} ¥ is the set of all nodes
in X that are not on 082,

For each i=1,2,.., N, integrating (2.1) over 4, and
applying Green’s formula to the second term we have

du
L Lm, (¢ Vi —au) -nds+ L’_ Gu dx dy

=j. Fdxdy. (2.2)
&

For any te(0,T] and i=1,2, ., N, let u,{¢) be the
approximate value of u(x, 7) at (x;, #). Using the one-point
quadrature rule we have from (2.2)

Guilt) || _J. (e Vu—au)-nds+ G (1) u,(1) |d,]|
ot ad;

=F (1) |d,|, {23}
where G,(1)=G(x,,t) and F,(¢)=F(x,,1}). We now con-
sider the approximation of the second term in (2.3).

Let I,={j:e, ;e E} denote the index set of neighbouring
nodes of x;, where e, ; denotes the edge joining x, and x;, as
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shown in Fig 2.2. Since dd, is polygonal and cach of its sides
is perpendicular to one of the edges joining x,, we have
(eVu—au)-e, ds,

| eVu—au) mds=Y | (24)

ad; jel i J

where /; ; denotes the segment of dd; perpendicular to the
edge e; ; and is oriented counterclockwise with respect to x;
(see Fig. 2.2) and e, ; denotes the unit vector from x; to x,.
Forany te(0,T], i=1,2,.., N, and je I, we now con-

sider the two-point boundary value problem
d du

2

de de

i L)

—a,'j(t)u)=0 one;

iJ
u(x;, t)=u;(1), (2.5)
u(x;, t)y=u,#),

where a, () is a constant approximation to a-e; ;on e
Solving this equation analytically we obtain

ij

i :

_ a; (1) e ;i
der’,j it e, (B( ; e j)uj(t)

ij _i
_B(_M) uf(f))’
[

where B(x} is the Bernoulli function defined by

fith=e

(2.6)

x#0

X
B(xy=<{e" —1 (2.7)
1

x=0.

Obviously f; {¢) defines a constant approximation to the
integrand on the right side of (2.4). Furthermore, the solu-
tion of (2.5) also defines a piecewise exponential approxima-
tion to the solution of {2.1) on ¢, ;. Substituting (2.6) into
{2.4) and the result into (2.3) we obtain

A, I, | [
u,(!)+ y |:- ‘-lhljtl'-l (B(—Llle”—l) u, (1)
iF f

ot jek

_B (%) u,.(:)) +G (1) u(r)

=F(1)

(2.8)

Xijn

FI1G. 2.2, Notation for edges and nodes.

foralli=1, 2, .., N. Symbolically we have

(I£+C(f) -+-D(I)) u(z)=F{s),

(2.9)
where I denotes the unit matrix, C(¢) and D(¢) denote
the matrices corresponding respectively to the second and
third terms of (2.8), u(¢)=(u,(¢), .., u{1})" and F(1)=
(Fy(t), ... FA{1))T. The matrix C(z)=(c, ) is unsymmetric
unless a; (#)=0foralli=1, 2, .., Nand allje I.. It is struc-
tually symmetric, ie., if ¢;#0 then ¢, #0 and vice versa.
However, it is easy to verify that C(z) is irreducibly
diagonally dominant with respect to its columns. Since
c;>0 and ¢;<0 (/# j) we have that C is an M-matrix
{cf. [22]). There are several efficient solvers for (2.9}, for
example, CGS [20] and Bi-CGSTAB [21]. As mentioned
in Section 1, analyses of the method for the case that a is
irrotational can be found in, for example, [ 15, 17]. A com-
plete mathematical analysis of the above method for the
case that a may not be irrotational and that éu/d¢t = 0 can be
found in [ 16]. There the stability of the method is shown to
be independent ofe and the following error estimate for
& < h, under some mild conditions on the mesh, is given

h'2K(u),

& ;e E |ar'.j|

(2.10)

”“k_u”i.h‘<-

where u, = (2, ,, ..., Uy), U= (1(X ), #(X;), .., {Xp)}), A i8
the mesh parameter, Cis a positive constant depending only
on £2, K(u) denotes a positive constant depending on the
first order seminorms of F, f=¢ Vu—au and », and |||, is
a discrete norm defined by

2 v~ ?
||V|I]J;:h Z |ei.j| ”i.jl
AN

i 1
+ Z ”? (2 Z ai,j“i,j|+Ga‘ |d¢'f) (2.11)

i=1 Jel

for any vector v={(v,, v, ..., v 5). The norm defined in (2.11}
is a discrete h-dependent energy norm, while the continuous
energy norm associated with (2.1) is e-dependent. The proof
of (2.10) 1s lengthy and we refer to [ 16]. Since K(u) depends
on the first-order seminorms of f and u, (2.10) does not
imply e-uniform convergence of the method except for some
special cases in which K(#) has an e-independent upper
bound.

For (2.10} and (2.11) to apply weneed 1 ¥, ., a,, |/ ;| +
G,|d;{ 20 for all i and min, la,,| to be bounded away
from 0. The former holds if }V-a + G= 0 (cf. [16]) and the
latter is guaranteed if the mesh is chosen such that the
angles between all of the ¢, ; and the characteristic direc-
tion a are locally bounded away from =/2. We remark that
the above method does not need any further restriction on
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the mesh, such as the condition that it has no obtuse angles.
However, in practice, we may need to minimise the maxi-
mum angle and maximise the minimum angle so that the
method yvields more accurate results for a mesh with a fixed
number of nodes. This can be achieved by smoothing a
given Delaunay triangulation. We als¢ comment that if four
mesh nodes form a rectangle, whether the rectangle is
divided into two triangles or not, makes no difference to
the linear system (2.9). This is because the weights /7, ;
(cf. Fig. 2.2) associated with the two diagonals are zero, and
so these diagonals do not contribute to the lincar system.
Finally, for the time discretisation of (2.8) we use the
simple backward Euler scheme. Letting O=¢,<¢, < --- <
< .- <t, =T be a partitioning of [0, T], this leads to

k k— &
U, —u; l+ Z 'sl'{i.jl (B(_a::j Iei.jl)uf
W=ty ey 1€ 1d;] £

ak e, ,
_B(——”L ’) u;.‘)+G’,.‘uff=Ff

for all i=1,2, ., N and k=1,2, .., K, where the super-
script k denotes the nodal values at the & th time level and u*
denotes the approximate nodal value of u,{¢) at t = t,. This
scheme has first-order accuracy in ¢ and is stable,

(2.10)

3. APPLICATION TO THE STREAMFUNCTION-
YORTICITY EQUATIONS

In this section we discuss the application of the exponen-
tially fitted finite volume method developed in the previous
section to (1.1} and (1.2). The application to (1.1} is
straightforward because it is a linear Poisson equation. The
linear system corresponding to (2.12) is

|7 ;1 x x
Y L (- ) k=0 (3.0)
senlesiidd g
for i=1,2,..,N and k=1, .., K. The boundary condition

for (3.1} is taken to be y*(x,;) =y 5(x,) for all x,£Q N X.
The application to (1.2) is not straightforward because of
the need to evaluate the term a* ;i (2.12). Also, since there
is no physical boundary condmon for {1.2), we need to
define a numerical boundary condition for it. We first con-
sider the evaluation of g, ;. Let e= (e, ¢,) be an arbitrary

unit vector. Since a = (y,, —,) we have
Fri )
a-e=e,5t eZa—w*Vl/l-eL,

where e* =( —e¢,, ¢;) denotes the unit vector obtained by

581/115/1-5

rotating € by 90° counterclockwise. Thus we choose the
approximation

k k
ko Yip2— ‘/’e‘,j;l

L7

0

{3.2)

(4i.s]

where the % % (k=1,2) denote the computed nodal values
at the end-points x, ;,, X, ;, of the edge /, ; of the dual
mesh D (cf. Fig. 2.2). Using (3.2) the system of equations
corresponding to (2.12) for (1.2) is

wkw

Sy Y T

ko pk
i1 Fa
d ( ( - B )wf
;e!,l f gi.j

P
_B(M)mf)JrG:‘ [=F; (33)
G

tp—li_)

for i=1,2,.,N and k=12 ., K where o, ;=
| ;1/(Re e; ;) and B{x) is the Bernoulli function defined
in (2.7).

We now consider the boundary condition for (3.3). Let
X,, € X dQ. Integrating both sides of (1.1} over 4, and
using Green'’s formula we obtain

j wlx,, £} dx dy = j Vi(x,, t)-n ds
dm Odm

=ZJ

eIy Tim g

Vir(x;, 1) -nds,

Noting that 24, consists of edges both inside £2 and on 6,
we make the following approximation at time level k:

1 l .
“""’"”“)“E—l[ T Wy 1) L

j € dm. Xy 012 | mu‘l

+j Vi(x, Ik}-nds}.
Dy 802 '

Finally, using the boundary conditions (1.4) and (1.5) we
obtain

o(x,,, ! )z——[ % . -/
S jerm‘};jem('ﬁ —¥p(x k))lem‘jl
+ wadx, 1) ds] (3.4)
By N O

for all x,, e Xn &, Obviously (3.4) establishes the rela-
tionship between the approximate boundary nodal values
of w and the approximate nodal values of v. We remark
that when the mesh 7 is a finite difference mesh, (34}
reduces to the conventional first-order approximation (see,
for example, [11]).
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Systems (3.1), (3.3), and (3.4} define a unique
approximate solution to (¢, w) at the time levelk.
Obviously these linear systems are coupled. They can be
linearised by a Newton-like method or decoupled by a non-
linear Gauss—Seidel method. For details of the latter, we
refer to [ 11, 107,

4. NUMERICAL RESULTS

To test the exponentially fitted finite volume method
developed in the previous sections we use it to compute the
numerical solution of the following linear advection—diftu-
sion problem, in double precision arithmetic, for a wide
range of values of the Reynolds number

-—V-(LVu—au)-l-Zu:F in Q=(0,1)*
Re

=0 on 642,

where a=(1,1) and

F=x(1—e*~ a1 42~ 4 p(1 —efr—1ey]
+ p(1 =P VE)[ 14 eV 4 x(] — e D],

Its analytic solution is
Hoxact = xy(l — f,’(x_ l}"’:)( 1— e(y— 1]/’5).

The solution of this problem has boundary layers along the
two sides {(1,»)[0<y<1} and {(x,1)|0<x<1}. To
solve this problem numerically we start from a Delaunay
triangulation with 16 uniformly distributed nodes on 82
and 9 randomly distributed nodes in £2. This mesh is then
smoothed by recursively moving the interior nodes to the
average of their neighbouring nodes. The maximum and
minimum angles of the resulting Delaunay triangulation are
respectively 106.3° and 32.8° and the mesh parameter
h,~ .. We then refine this mesh repeatedly by adding the
mid-points of the edges. Thus we obtain a sequence of
meshes corresponding to the mesh parameters {4, } 7, where
Bo=h,_,/2(k=2,3,4,5). Foreach k =1, 2, 3, 4 we define
a rate of convergence p, by

”uhk — Wexact ” 1.4

pr=log,
”“h;H.] — Wexact ” l_h’

where u;, denotes the vector of the nodal values of the
approximate solution on the mesh with parameter A;., Ueyaer
is the vector of the nodal values of the exact solution and
- |l .4 1s defined in (2.11). Then, we define the computed rate
of convergence to be p={(3}_, p,)/4. Based on the above

MILLER AND WANG

TABLE 1

Computed Rates of Convergence in Various Norms for
Different Values of Re

Re I [ Ilon
1 2.00 1.79 197
10 1.80 158 1.80
100 0.54 031 0.90
1000 0.54 032 0.78
5000 0.60 0.33 0.78
10000 0.60 0.33 0.78

method we also define the computed rates of convergence in
the discrete maximum norm

"“h — Ueyact ” ko max |M,- - uexacl(xr’)l
1igN

and in the discrete L” norm

N

”uh — Uerger ||0.h = ( z

1/2

(uf_uexact(xi))z |d¢|) -
i=1

The computed values of p for different values of Re are listed
in Table 1. From the table we see that when Re is large the
computed rate of convergence in the norm |- |}, , is about
0.5. This is in agreement with (2.10). The computed rates of
convergence p in the norm || i, , and || - ||, are respectively
about 0.3 and 0.8. When Re is small the computed rates of
convergence in all three norms are close to the classical
value 2.

We now use the exponentially fitted finite volume method
to compute the numerical solution of the two-dimensional
unsteady incompressible flow problem (1.1)—(1.5) corre-
sponding to the square driven cavity with 2 =(0, 1) x (0, 1).

_» Lid velocity

y=0, dyidy=1
Y= ¢} y=0
owiox =0 ylox =0
y=0, dyfdy=0
FIG. 4.1. The square driven cavity.
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FIG. 42. The Delaunay triangulation Tu.

This is depicted in Fig. 4.1. The initial and boundary condi-
tions are

Wo(X)=wy(X)=0  VYxeQ
Wo(x, )=0  V(x,1)ed2x(0, T]
1 y=1
alx 1) = {0 otherwise,

where T > 0 is chosen to be sufficient large so that the solu-

1]

03

07

05

o5t

04}

03

o1

A )

® 6] 01 03 04 05 08 07 03 03 3
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tion is stationary at t = T. The size of the time step is chosen
to be 0.05. At the kth time step the algebraic systems (3.1),
{3.3), and {3.4) are solved iteratively by the Gauss—Seidel
method [11], mentioned in the previous section, until the
following stopping criterion is satisfied:

V395~ o, < 1075,

where "' and w*’ denote respectively the vectors of the
approximate nodal values of ¢ and ¢ at the /th
Gauss-Seidel iteration and the k th time step, V; denotes the
discretised Laplace operator appearing in (3.1) and |-|,
denotes the Euclidean norm. The stopping criterion for time
stepping is chosen to be

max |wf —ef ! <1074
xie X

The decoupled linear system (3.1) 1s solved by the ICCG
method [ 141, since its coefficient matrix is a symmetric and
positive-definite Af-matrix. The decoupled linear system
{3.4) is solved by the preconditioned CGS method [20].
The problem is first solved on a uniform rectangular mesh
Teo s With 3600 mesh nodes and on a triangular mesh
T a0 with 3489 mesh nodes, as shown in Fig. 4.2. The latter
mesh is obtained by first generating a Delaunay triangula-
tion consisting of 16 uniformly distributed boundary nodes
and four randomly distributed interior nodes. This tri-
angular mesh is then smoothed recursively by moving each
interior node to the average of its neighbouring nodes.
Finally the smoothed mesh is refined into a triangular mesh
with 3489 mesh nodes by recursively adding a node to the
midpoint of each edge. The maximum and minimum angles
of the resulting mesh are respectively 108.3° and 26.5°. The

- ™

b

0
os}
oIt
esh 1] i
05
04
03
a2}

A B o T

0 a1 02 03 04 05 06

FIG. 43, Driven cavity solution for Re = 1000 on T, 4 {(2) stream function; (b) vorticity.
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FIG. 44. Driven cavity solution for Re = 1000 on T4 (a) stream function; (b) vorticity.

stream function and vorticity on the two meshes for
Re=1000 are plotted in Fig. 4.3, and Fig.44. These
numerical solutions are qualitatively close to those obtained
in [6] using a much finer uniform mesh. However, com-
paring the streamlines in Fig. 4.4 with those in Fig. 4.3, we
see that there are small differences in the width and height
of the secondary vortices. This may be because on the
uniform mesh the numerical method is superconvergent. It
seems that the larger the ratio of the maximum and
minimum angles, the worse the results. To illustrate this we
solve the problem with Re = 1000 on an arbitrary Delaunay
triangulation T, with 3634 mesh nodes. The maximum

07y

115

and minimum angles are then respectively 137.5° and 12.9°,
The numerical results are plotted in Fig. 4.5. It is clear that
secondary vortices are represented less accurately than by
the solution on Ty,

Table Il gives the maximum nodal value |y, | of [\v| and
its coordinates {x_, y,) for different values of Re obtained on
Teoxeo> 1 1480, and on the 257 x 257 uniform mesh 7557, 257
used in [24]. From the table we see that the locations
obtained on T4y, are more accurate than those from
T1450- However, the values of max || on T, are closer to
those given in [24]. The computed vorticity is extremely
sensitive to the discretisation method and mesh, because

03
=
03
07
05
05
04
03

02

ol

il ¥ 5 BRI

° 02 03 4 05 05 07 08 0% )

¢ ol

FIG. 4.5. Driven cavity solution for Re = 1000 on T4, (2) stream function; (b) vorticity.
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TABLE II

Maximum Nodal Value of || and Its Coordinates for Different
Reynolds Numbers on Meshes Tgy 60, T34z, and Ta57 257

TI':U & T3489 TZS‘,’x'IST

Re X Ve (vl X ¥e .| Xey Ve [l

100 061,075 01029 0.63,073 0.1030 062,074 0.1035
1000 054,058 0.0925 035,059 01074 053,057 01193
2000 054,058 00827 055 059 0.1060 052,057 0.1217
3200 054,056 00706 055064 01065 052,054 01234
4000 0.54,054 0.0649 057,066 0.1055 052,054 01234
3000 054,054 00592 057,066 00035 052 054 01240
Note, The results on Tys7, 557 are taken from [24].

TABLE III

Values of w at {x_, y.} and (3, 1} for Different Reynolds Numbers
on Meshes Tg .60, Taage, 304 Ta57.257

Tw ® 60 TJdBS‘ T257 x 257

1)

ra—

Re wix,y) o}l olx,y) o l) ok, p) of

100 3.14 6.54 332 6.59 316 6.57
1000 1.74 18.24 205 13.57 205 14.89
2600 1.38 29.27 202 15.16 — —
3200 1.15 39.63 232 14.26 1.99 25.94
4000 1.05 45.12 247 13.98 — —
5000 0.95 50.84 259 14.10 1.86 33.01
Note. The results on Tpy9, 557 are taken from [6].

it is singular at the two upper corners and displays sharp
boundary layers along the lid of the cavity when Re is large.
In Table III we list, without comment, the computed values
of vorticity «, at the points (x,, y,) and (1, 1) for different
Reynolds numbers using the exponentially fitted method on
Teoxsa» T 3483, and nsing the upwind method on the uniform
mesh T557, 057 (¢L [6]).

Finally the problem is solved for Re = 10000 on T4, and
T oo 60- No unsteady solution is found for these two meshes

-5.1570E-7 Re = 10000

-6.1173E-2

0 10000

FIG. 46, Minimum nodal value of stream function i against time step
on Ty, g0 for the driven cavity problem.

-1.4765E-2 Re = 10000

-1.0301E-1
300

10000

FIG. 47. Minimum nodal value of stream function ¥ against time step
on Ty, for the driven cavity problem.

even though it is known that there is no stationary solution
for this value of the Reynolds number (cf, for example,
[7-9, 19]). However, when the meshes are refined, oscilla-
tions in the stream function and vorticity are captured.
Figures 4.6 and 4.7 are plots of the minimum nodal value
of v against time obtained on the 80 x 80 uniform mesh
Tsoxse and on a Delaunay triangulation Tgsq with 6561
mesh nodes. The maximum and minimum angles of the lat-
ter are respectively 110.6° and 31,3°. From the figures we see
that in both cases the numerical solution oscillates steadily
after a finite time. Note the differences in the scale in the two
figures.

5. CONCLUSION

In this paper we developed and tested an exponentially
fitted finite volume method for the numerical solution of the
Navier-Stokes equations in the streamfunction-vorticity
variables describing 2D incompressibie flows. The method
is based on an unstructured Delaunay mesh and the corre-
sponding dual Dirichlet tessellation and on a locally con-
stant approximation to the flux, which yields a piecewise
exponential approximation to the exact solution. The latter
was proposed independentiy by Allen and Scouthwell [1]
and Scharfetier and Gumme! [ 18]. Numerical tests were
presented for a linear advection-diffusion problem and the
method was then applied to the driven cavity problem for
Reynolds numbers up to 10% The numerical results
indicated that the method is robust for a wide range of
values of the Reynolds number. For the case Re=10*
unsteady solutions were captured when the mesh was
sufficiently fine.
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